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APPROXIMATION OF A FUZZY NUMBER 

PRESERVING ENTROPY-LIKE NONSPECIFITY 

The problem of the interval approximation of fuzzy numbers is discussed. A measure of uncertainty, 

called entropy-like nonspecifity is proposed and interval approximation operator preserving this non-

specifity measure is suggested. 

1. Introduction 

Fuzzy sets are effectively applied in modelling and processing imprecise infor-

mation. However, sometimes we have to approximate the given fuzzy set by a crisp 

one. If we then use a defuzzification operator which replaces a fuzzy set by a single 

number we generally loose too much important information. Therefore, an interval 

approximation of a fuzzy set is often advisable. Such approximation are used in many 

areas as fuzzy pattern recognition, fuzzy image processing, fuzzy algebra, etc. (see, 

e.g., [9], [10], [12]). 

In this paper, we restrict our attention to the most important subfamily of all 

fuzzy sets, i.e., to fuzzy numbers. The problem of interval approximation of fuzzy 

numbers was discussed by Chanas [1] and Grzegorzewski [5], [6]. In the present 

paper, we propose a new method for the interval approximation preserving the 

amount of information delivered by the fuzzy number under study. In particular, 

we suggest an interval approximation operator which preserves entropy-like non-

specifity measure. 
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2. Interval approximation of a fuzzy set number 

A fuzzy subset A of the real line R with membership function A : R → [0, 1] is 

called a fuzzy number if it normal, fuzzy convex, its membership function A is upper 

semicontinuous and its support is a closed interval. A space of all fuzzy numbers will 

be denoted by F(R), while P(R) will be a family of all closed intervals on the real 

time. Let us also recall that core A = {x  R : A(x) = 1}, and supp A = cl({x  R : 

A(x) > 0}), where cl is the closure operator. 

Sometimes we have to replace a fuzzy number with a crisp subset of the real line. 

More precisely, we have to find an operator C : F(R) → P(R) which transforms fuzzy 

numbers into closed intervals of the real line. Although we can do this in many ways, 

such interval approximation of a fuzzy number should fulfil at least two natural re-

quirements comprised in the following definition: 

Definition 1. An operator C : F(R) → P(R) is called an interval approximation 

operator if for any A  F(R) 

(C1) C(A)  suppA 

(C2) coreA  C(A). 

The definition given above leads to a very broad family of operators. However, it 

seems desirable to specify some additional requirements. For instance, it is natural to 

expect that if two fuzzy numbers A and B are close – in some sense – then their inter-

val approximations are also close. This means that the interval approximation of 

a fuzzy number should fulfil the following continuous-type condition. 

(C3) (A, B  F)  ( > 0)  ( > 0)  d(A, B) <   d(C(A), C(B)) < , 

where d : F(R) → [0, +) denotes a metric defined in the family of all fuzzy numbers. 

Such interval approximation operator which satisfies (C3) is called the continuous 

interval approximation operator. 

Different method for finding interval approximations of fuzzy sets are used. The 

easiest way is to substitute a fuzzy number either by its support, i.e., C0(A) = suppA or 

by its core, i.e., C1(A) = coreA. However, using these methods all information due to 

fuzziness of the object under discussion is neglected. Hence these methods cannot be 

recommended to practitioners. Another operator, probably best known and the most 

popular in practice, is 

 }5.0)(:{)(5.0 = xxAC AR . (1) 

This operator seems to be a compromise between two extremes C0 and C1. Moreo-

ver, it has quite a natural interpretation: any x  R belongs to the approximation in-

terval C0.5(A) of a fuzzy number A if and only if its degree of belongingness to A is not 

smaller than its degree of belongingness to the complement of A (i.e., belongs to 
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A rather to A). C0.5(A) is sometimes called in literature the nearest ordinary set of 

a fuzzy set A. Unfortunately, these three operators are, in general, not continuous. 

In [5] and [6], Grzegorzewski suggested a simple and natural continuous approxi-

mation operator which is the nearest interval approximation of fuzzy number with 

respect to L2-type metric (see [4]). It is worth noting that this nearest interval approx-

imation operator is equivalent to the expected interval of a fuzzy number, considered 

in a different context independently by Dubois and Prade [3] and Heilpern [7]. The 

problem of the interval approximations was also considered by Chanas [1], who in-

vestigated an operator which was the best wit respect to the Hamming distance 

 dxxxBAd BA |)()(|),(  −= 


−

, (2) 

where A and B are membership functions of A and B, respectively. 

The papers mentioned above were focused mainly on “geometric” properties of the ap-

proximation operators. However, when we approximate one model with another one, this 

basically means that we want to replace one type of information with an equal amount of 

information of another type. In other words, we want to convert information of one type to 

another one while, at the same time, preserving its amount. This expresses the spirit of the 

so called principle of information invariance (see [11]). Therefore, it seems desirable that 

an interval approximation C(A) of a fuzzy number A should contain the same (or at least 

similar) amount of information as the initial fuzzy set A. Here, one can considered different 

measures of uncertainty, information, specifity or nonspecifity, etc. If we denote such 

a measure by I, then we can write this natural requirement in the following way 

(C4) I(A) = I(C(A)). 

Below we propose an interval approximation operator of fuzzy numbers which 

fulfil all desirable conditions (C1)–(C4). 

3. Entropy-like nonspecifity measure 

A concept of information is intimately connected with the concept of uncertainty. 

In the framework of probability theory the Shannon entropy [13] is commonly used to 

measure the amount of information contained in a probability distribution. Although 

for about three hundred years uncertainty was conceived solely in terms of probability 

theory, now it is also described by fuzzy set theory, possibility theory, evidence theo-

ry and the theory of fuzzy measures. Different types of uncertainty are now recog-

nized in these theories and new tools for handling uncertainty are worked out. Among 

them one can find the concept of specifity, originally introduced by Yager [14], to 

measure the degree to which fuzzy subset contains one and only one element. This 
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measure can also be used to indicate the degree to which a possibility distribution 

allows one and only one element as being possible. Conversely, Higashi and Klir [8] 

described nonspecifity of a fuzzy set, using the so called, U-uncertainty. The notion 

of entropy is also considered in the framework of fuzzy sets: starting from Zadeh’s 

definition [15], through the concept of nonprobabilistic entropy due to De Luca and 

Termini [2]. For more details connected with the types of uncertainty and uncertainty 

measures we refer the reader to [11]. 

Many of the uncertainty measures mentioned above were considered generally for dis-

crete universes of discourse. Below we suggest another nonspecifity measure which seems 

to be appropriate for our purposes and for dealing with fuzzy numbers (i.e., in the continu-

ous domains). Let us start from the general definition of a noncpecifity measure. 

Definition 2. A nonspecifity is any function N : F(R) → [0, +) satisfying the fol-

lowing conditions 

(a) N(A) = 0  A is a crisp real number, 

(b) A  B  N(A)  N(B). 

Thus, a nonspecifity measure indicates a grade of nonspecifity of a fuzzy number. The 

lowest nonspecifity (equal to zero) is received by crisp real numbers and it increases to-

gether with enlarging cores and supports. One can easily find many nonspecifity measures, 

but we will consider here only one such measure, as defined below: 

Definition 3. A function H : F(R) → [0, +) given as follows 

 dxxxAH AA ))(1ln()(
2ln

1
)(  += 



−

 (3) 

is called the entropy-like nonspecifity measure. 

A function proposed above is called “entropy-like” measure since its form resem-

bles Shanon’s entropy. We immediately get. 

Proposition 1. H is a nonspecifity measure. 

Proof: We have to prove that a function H given by (3) satisfies both conditions (a) 

and (b) from Definition 2. Suppose firstly that A is a crisp real number. Then there exist 

such x0  R that A(x0) = 1 and A(x) = 0 for all x  R \ {x0}. Hence H(A) = 0. Converse-

ly, let H(A) = 0. This means that A(x) = 0 for x  R \ E and A(x)  0 for x  E, where E 

is a set of measure zero. However, since A is a fuzzy number, it should be normal, fuzzy 

convex, it should have upper semicontinuous membership function and support which is a 

closed interval. Therefore, set E should have the following form E = {x0}, where A(x0) = 

1. Thus, finally, A is a crisp real number and condition (a) holds. 

To prove (b) let us assume that we have two fuzzy numbers A and B such that A  B. 

This means that A(x)  B(x) x  R, where A and B denote membership functions 

of A and B, respectively. 
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Thus, we get 

)())(1ln()(
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

−

 , 

which completes the proof.  

Proposition 2. For any fuzzy number A 

||)(|| AsuppAHAcore   

and we get H(A) = |supp A| = |core A| if and only if A is a crisp interval. 

Proof: It is easily seen that 
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On the other hand, 

||2ln
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1
))(1ln()(

2ln

1
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which proves the proposition.  

Among desired properties of the entropy-like nonspecifity measure one can distin-

guish its continuity. We have 

Proposition 3. Let A and B denote two arbitrary fuzzy numbers. Then  )0  

( > 0) 

 − |)()(|),( BHAHBAd . 

The proof is straightforward, because function (3) is continuous. 

4. Interval approximation of 

a fuzzy number preserving nonspecifity 

It is known that for any fuzzy number A there exist four numbers a1, a2, a3, a4  R 

and two functions fA, gA : R → [0, 1], where fA is a nondecreasing and gA is a nonin-
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creasing function, such that we can describe a membership function A in the follow-

ing manner 

 



























=

.if0

if)(

if1

if)(

if0

)(

4

43

32

21

1

xa

axaxg

axa

axaxf

ax

x

A

A

A  (4) 

Now, let us consider the following operator CH : F(R) → P(R) 
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It can be shown that 

Proposition 4. Let A be a fuzzy number with the membership function A given by 

(4). Then an operator CH given by (5) is an approximation operator. 

Proof: We have to prove that the given set (5) fulfils conditions (C1) and (C2). Let 

us first adopt the following notation: 
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1
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+=  . (7) 

Since both Hf and Hg are nonnegative we get 

AcoreaaAHaAHaAC gfH =+−= ],[)](),([)( 3232 , 

i.e., (C1) holds. 

According to (6) and (7), we get Hf(A)  a2 – a1 and Hg(A)  a4 – a3. Therefore, 

AsuppaaAHaAHaAC gfH =+−= ],[)](),([)( 4132 , 

and (C2) holds, which completes the proof.   

Proposition 5. The interval approximation CH given by (5) preserves entropy-like 

nonspecifity, i.e., for any fuzzy number A 
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)())(( AHACH H = . 

Proof: Using (6) and (7) notation we have 

)](),([)( 32 AHaAHaAC gfH +−= . 

Since CH(A) is an interval, thus by Proposition 2 we get 
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which is our claim.  

Now, let us consider two fuzzy numbers A and B which are close with respect to 

the Hamming distance (2). Then we can show the following theorem. 

Proposition 6. Let A and B be two fuzzy numbers. Then ( > 0) ( > 0) 

  ))(),((),( BCACdBAd HH . 

The proof results immediately from Proposition 3. 

Propositions 4–6 actually prove that all desired conditions (C1)–(C4) are fulfilled. 

However, it is obvious that one can construct several approximation operators based 

on the entropy-like nonspecifity measure H satisfying (C1)–(C4). Next, two proposi-

tion show that our operator is also in some sense the best one. 

Proposition 7. If A is a trapezoidal fuzzy number then the operator CH(A) produc-

es the nearest interval approximation preserving the entropy-like nonspecifity meas-

ure H of a fuzzy number with respect to the Hamming distance (2). 

Proof: Let us assume that CH(A) = [c1, c2], where c1 = a2 – Hf(A) and c2 = a3 + 

Hg(A). Suppose |CH(A)| = c2 – c1 = h. It is evident that each interval Is(A) = [s, s + h], 

such that a1  s  a2 and a3  s + h  a4, is an interval approximation of the fuzzy 

number A and 

)())(())(( AHACHAIH Hs == . 

Moreover, it is seen that there exist s0  [a1, a2] such that CH(A) = Is(a). 

Now, let us compute the Hamming distance between the fuzzy number under study A 

and given interval approximation Is(A). By (2) we get 
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dxxxAIAd IsAs |)()(|))(,(  −= 
+

−

, 

where Is(x) is a characteristic function of the interval Is(A). Assuming that the mem-

bership function A of A is given by (4) we get 
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To minimize d(A, Is(A)) we compute its derivative with respect to s 

)(2)(2))(,( hsgsfAIAd AAs +−= . 

The solution of the equation = ))(,( AIAd s 0 should fulfil the following condition 

 )()( hsgsf AA += . (8) 

Since A is a trapezoidal fuzzy number, then its membership function is given by 
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and equation (8) reduces to 
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After some easy computations we get 
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Using (6) and (7) for the trapezoidal fuzzy number (9) we get 
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into (10) we get d(A, Is(A)) = 0 for 

1
12

2
2ln4

c
aa

as =
−

−= . 

Since this derivative changes also its sign from a minus into plus crossing the 

point s = c1, we can assert that the Hamming distance reaches its minimum for the 

interval Ic1(A) = CH(A) which completes the proof.  

One can also prove the following theorem: 

Proposition 8. If A is a symmetrical fuzzy number then the operator CH(A) pro-

duces the nearest interval approximation preserving the entropy-like nonspecificity 

measure H of a fuzzy number with respect to the Hamming distance (2). 

Proof: Let A  F(R) with a membership function A be given by (4). Since A is 

symmetrical, then we have 
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for any z  R. Hence 
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for any z  R. 

From the proof given above we know that each interval Is(A) = [s, s + h] such that 

h = |CH(A)| = |c2 – c1| is an interval approximation of A. Since in our case Hf(A) = 

Hg(A), hence 

23)(2 aaAHh f −+= . 

We also know that the nearest interval approximation with respect to the Ham-

ming distance should fulfil (8). Combining (8) with (11) we obtain. 
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and after simple calculations we get 

12 )( cAHas f =−= . 

Since this derivative changes also its sign from a minus into plus crossing the 

point s = c1, hence the Hamming distance reaches its minimum for the interval Ic1(A) = 

CH(A), which is a desired results.  
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Aproksymacja liczb rozmytych 

zachowująca entropijną miarę niespecyficzności 

Zbiory rozmyte okazały się bardzo pomocne w modelowaniu i efektywnym przetwarzaniu nieprecy-

zyjnych informacji. Czasem zachodzi jednak konieczność przybliżenia danego zbioru rozmytego za po-

mocą zbioru nierozmytego. W tym celu stosuje się zazwyczaj defuzyfikację (wyostrzanie), ale metoda ta 
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niestety często prowadzi do utraty zbyt wielu cennych informacji. W tym przypadku wskazane być może 

posłużenie się aproksymacją przedziałową. 

W niniejszej pracy ograniczymy się do najważniejszej podrodziny zbiorów rozmytych, tzn. do liczb 

rozmytych. Dla wspomnianej rodziny przedstawiono nową metodę aproksymacji przedziałowej, zacho-

wującą ilość informacji, jaką dostarcza przybliżana liczba rozmyta. Dokładniej, wprowadzona zostanie 

pewna miara informacji, zwana entropijną miarą niespecyficzności, a następnie wskazana zostanie meto-

da aproksymacji przedziałowej liczb rozmytych, zachowująca tę miarę informacji. 


